
-VImmediates

In some of the RISC-V instruction formats

immediate values are embedded into the
instruction word. When executing or emulating
a RISC-V instruction we need to extract

these immediate bits and reconstitute them

to become a signed 64-bit value (i. e. int64-t) .

The signed 64-bit value then can be used a

one of the operands for the instruction.

For example , here is theE-type format ,
for instructions like add : (add : to+ 1

, 99) :

3)

impos, opcode Y
For add : we need to add ise to the immediate.

However we first need to extract the imm bits

and then then sign extend to 64 bits to

make it a signed 64-bit value in two's

complement.



Here is how we do this for i-type instructions :

vint32-t in ; // assume the 32 bit RISC-V instruction

It is in in

vint64-+ vimm ; 11 unsigned extracted imm bits

in+ 64-+ imm ; // final signed 64-bit immediate

rimm = get-bits (iw , 20 , 12) ; // get the Upper l bits

imm = sign-extend (vimm , II) ; // signext to 646 its

Now you can use imm in execution
, e . g. )

rspfregstid] = rsp-regs(rs1] + imm

-mplicatedImmediates

You will notice the the other instruction formats

have more complicated immediate embeddings.

For example here is the s-type :

- 2015mo opcode



In this case we need to extract each

immediat part , combine them , then sign extend

the combined immediate
,
like this :

vint32 . t iw ;

vin+ 64 - timmb- 5;

vint 64-+ imm4-0;

vint64-t vinm;
int64-t imm;

imm 11 - 5 = yet-bits (iw , 25, 7) ;
imm4 . 0 = yetbits (iv , 7 , 5) ;

vimm = (immll -5(5)(imm4 -
0 ;

imm = Sign-extend Lvimm , 11) ;

Notice that we shift immll . 5 to the left by
5 bits to put it in its place , then "or" it

with imm4 - 0. You can extend this technique

to extract immediates from the other formats.

Note : if the embedded immediate does not
-

include O(zero) Then a 0 is implied in the

first bit of the final immediate
.


